martes, 25 de octubre de 2011

MAGNETISMO (CONCLUSION)

SE SABE QUE EL MAGNETISMO ES UN FENOMENO FISICO EN DONDE PRINCIPALMENTE LOS IMANES EJERCEN UNA FUERZA DE ATRACCION O REOULCION CON OTROS MATERIALES PRINCIPALMENTE YA SEAN METALICOS O CON PROPOIEDADES MAGNETICAS.
  EL FENOMENO DEL MAGNETISMO SE HA IDO ESTUDIANDO DESDE TIEMPOS MUY REMOTOS COMO POR EJEMPOEL PRIMER FILÓSOFO QUE ESTUDIÓ EL FENÓMENO DEL MAGNETISMO FUE TALES DE MILETO, FILÓSOFO GRIEGO QUE VIVIÓ ENTRE 625 A. C. Y 545 A. C. EN CHINA, LA PRIMERA REFERENCIA A ESTE FENÓMENO SE ENCUENTRA EN UN MANUSCRITO DEL SIGLO IV A. C. TITULADO LIBRO DEL AMO DEL VALLE DEL DIABLO: «LA MAGNETITA ATRAE AL HIERRO HACIA SÍ O ES ATRAÍDA POR ÉSTE».[2] LA PRIMERA MENCIÓN SOBRE LA ATRACCIÓN DE UNA AGUJA APARECE EN UN TRABAJO REALIZADO ENTRE LOS AÑOS 20 Y 100 DE NUESTRA ERA: «LA MAGNETITA ATRAE A LA AGUJA».
PARA CONCLUIR CON NUESTRO TRABAJO SE DAN A CONOSER LAS ESTRATEGIAS METODOLOGICAS QUE UTILIZAMOS PARA REALIZARLO CON ÉXITO Y LAS EVIDENCIAS TANTO EN VIDEO COMO EN FOTOGRAFIAS PARA QUE PUEDAN APRESIAR NUESTRO TRABAJO

MAGNETISMO (ESTRATEGIA METODOLOGICA)


MAGNETISMO (SINTESIS)


El magnetismo (del latín magnes, -ētis, imán) es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influídos, de mayor o menor forma, por la presencia de un campo magnético.
El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz.
Los fenómenos magnéticos fueron conocidos por los antiguos griegos. Se dice que por primera vez se observaron en la ciudad de Magnesia del Meandro en Asia Menor, de ahí el término magnetismo. Sabían que ciertas piedras atraían el hierro, y que los trocitos de hierro atraídos atraían a su vez a otros. Estas se denominaron imanes naturales.[cita requerida]
El primer filósofo que estudió el fenómeno del magnetismo fue Tales de Mileto, filósofo griego que vivió entre 625 a. C. y 545 a. C.[1] En China, la primera referencia a este fenómeno se encuentra en un manuscrito del siglo IV a. C. titulado Libro del amo del valle del diablo: «La magnetita atrae al hierro hacia sí o es atraída por éste».[2] La primera mención sobre la atracción de una aguja aparece en un trabajo realizado entre los años 20 y 100 de nuestra era: «La magnetita atrae a la aguja».
Campos y fuerzas magnéticas
El fenómeno del magnetismo es ejercido por un campo magnético, por ejemplo, una corriente eléctrica o un dipolo magnético crea un campo magnético, éste al girar imparte una fuerza magnética a otras partículas que están en el campo.
Para una aproximación excelente (pero ignorando algunos efectos cuánticos, véase electrodinámica cuántica) las ecuaciones de Maxwell (que simplifican la ley de Biot-Savart en el caso de corriente constante) describen el origen y el comportamiento de los campos que gobiernan esas fuerzas. Por lo tanto el magnetismo se observa siempre que partículas cargadas eléctricamente están en movimiento. Por ejemplo, del movimiento de electrones en una corriente eléctrica o en casos del movimiento orbital de los electrones alrededor del núcleo atómico. Estas también aparecen de un dipolo magnético intrínseco que aparece de los efectos cuánticos, p.e. del spin de la mecánica cuántica.
La misma situación que crea campos magnéticos (carga en movimiento en una corriente o en un átomo y dipolos magnéticos intrínsecos) son también situaciones en que el campo magnético causa sus efectos creando una fuerza. Cuando una partícula cargada se mueve a través de un campo magnético B, se ejerce una fuerza F dado por el producto cruz:

jueves, 20 de octubre de 2011

miércoles, 19 de octubre de 2011

VARIACION DE LA RESISTENCIA CON LA TEMPERATURA

“VARIACION DE LA RESISTENCIA CON LA TEMPERATURA”
                              Medimos la resistencia de distintos materiales a diferentes temperaturas
para hallar la relación entre la temperatura y la resistencia.
Encontramos una relación lineal para materiales conductores, y un
gráfico tipo Arrhenius para el termistor. Para el caso de una aleación -
manganina- no encontramos variaciones con la temperatura.

                             Para que un material pueda conducir la corriente eléctrica deben existir en su
interior cargas móviles (portadores) capaces de conducir la electricidad. En los metales las
cargas móviles son los electrones.
El movimiento de estas cargas es al azar y en todas direcciones, generándose
múltiples choques con los iones, pero no hay flujo de carga en ninguna dirección salvo que
se aplique un campo eléctrico.
La densidad de corriente J de un conductor depende del campo eléctrico E y de las
propiedades del material. En general esta dependencia suele ser compleja, pero para
algunos materiales en especial los metales a cierta temperatura J es casi directamente
proporcional a E, y el cociente entre E y J es constante. Esta relación se conoce como la
ley de Ohm. Este cociente se define como resistividad del material, Cuanto más grande
sea la resistividad, mayor será el campo necesario para ocasionar una cierta densidad de
corriente.
                              La resistividad de un material metálico aumenta, según la teoría vista, al aumentar la
temperatura, esto se debe a que los iones del conductor vibran con mayor amplitud, lo cual
hace más probable que un electrón en movimiento choque con un ión, esto impide el
arrastre de los electrones por el conductor y, por tanto, también la corriente.
La resistividad de las aleaciones es prácticamente independiente de la temperatura.
La resistividad de los no metales disminuye al aumentar la temperatura, según lo
visto en Física 2, puesto que a temperaturas mayores, más electrones son ¨ arrancados ¨ de
los átomos y adquieren movilidad. Este mismo comportamiento se presenta en los
semiconductores.
La resistividad es directamente proporcional a la resistencia del material, la relación
entre ambos esta dad por: R = L / A.
                            Medimos la resistencia de distintos materiales a diferentes temperaturas
para hallar la relación entre la temperatura y la resistencia.
Encontramos una relación lineal para materiales conductores, y un
gráfico tipo Arrenius para el termistor. Para el caso de una aleación -
manganina- no encontramos variaciones con la temperatura.
Introducción
Para que un material pueda conducir la corriente eléctrica deben existir en su
interior cargas móviles (portadores) capaces de conducir la electricidad. En los metales las
cargas móviles son los electrones.
El movimiento de estas cargas es al azar y en todas direcciones, generándose
múltiples choques con los iones, pero no hay flujo de carga en ninguna dirección salvo que
se aplique un campo eléctrico.
La densidad de corriente J de un conductor depende del campo eléctrico E y de las
propiedades del material. En general esta dependencia suele ser compleja, pero para
algunos materiales en especial los metales a cierta temperatura J es casi directamente
proporcional a E, y el cociente entre E y J es constante. Esta relación se conoce como la
ley de Ohm. Este cociente se define como resistividad del material, Cuanto más grande
sea la resistividad, mayor será el campo necesario para ocasionar una cierta densidad de
corriente.
La resistividad de un material metálico aumenta, según la teoría vista, al aumentar la
temperatura, esto se debe a que los iones del conductor vibran con mayor amplitud, lo cual
hace más probable que un electrón en movimiento choque con un ión, esto impide el
arrastre de los electrones por el conductor y, por tanto, también la corriente.
La resistividad de las aleaciones es prácticamente independiente de la temperatura.
La resistividad de los no metales disminuye al aumentar la temperatura, según lo
visto en Física 2, puesto que a temperaturas mayores, más electrones son ¨ arrancados ¨ de
los átomos y adquieren movilidad. Este mismo comportamiento se presenta en los
semiconductores.
La resistividad es directamente proporcional a la resistencia del material, la relación
entre ambos esta dad por: R = L / A.

VARIACION DE LA RESISTENCIA CON LA TEMPERATURA

VARIACION DE LA RESISTENCIA CON LA TEMPERATURA

VARIACION DE LA RESISTENCIA CON LA TEMPERATURA